The Influence of Cooperative Learning Model and Learning Motivation on Learning Outcomes of Class IV Student PPKn at SD Negeri 050601 Kuala District

Sri Eka Hariani¹
Universitas Negeri Medan
Email: sri.eka.hariani@gmail.com

Deny Setiawan²
Universitas Negeri Medan
Email: deny.setiawan@gmail.com

Daulat Saragi³
Universitas Negeri Medan
Email: daulat.saragi@gmail.com

Abstract

This study aims to analyze: (1) the influence of the cooperative learning model is higher than the conventional learning model; (2) the learning outcomes of students who have high learning motivation are higher than students who have low learning motivation (3) the interaction between cooperative learning models and student learning motivation influences student learning outcomes. The research was in the form of a Quasi Experimental Design with a 2x2 factorial. The instruments used were the PPKn learning outcomes test and the Learning Motivation instrument. Data analysis used two-way ANOVA. The results showed: (1) There is an effect of the cooperative learning model on student PPKn learning outcomes in class IV SD Negeri 050601 Kuala District; (2) The learning outcomes of students who have high learning motivation are higher than students who have low learning motivation; (3) There is an interaction between the Cooperative learning model and learning motivation on the learning outcomes of Student PPKn at SD Negeri 050601 Kuala District.

Keywords: learning outcomes, motivation, cooperative learning models.
A. Introduction

The spread of the coronavirus or COVID-19 pandemic has presented its own challenges for educational institutions in Indonesia. To anticipate the transmission of the virus, the government has issued policies such as social distancing, physical distancing, to large-scale social restrictions. This condition requires people to stay at home, study, work, and worship at home. As a result of this policy, the education sector such as schools and colleges stopped the face-to-face learning process. Instead, the learning process is carried out online which can be carried out from each student's home. In accordance with the Circular of the Minister of Education and Culture Number 4 of 2020 concerning the implementation of education policies in the emergency period of the spread of the coronavirus disease (COVID-19), it is recommended to carry out the learning process from home through online learning. The readiness of service providers and students is a demand for online learning. The implementation of this online learning requires supporting devices such as computers or laptops, devices, and other tools as intermediaries which of course must be connected to an internet connection.

PPKn is a subject that must be studied at all levels of education, from elementary to tertiary education. PPKn has a very important role in ensuring the development and survival of an Indonesian state government as well as advancing general welfare, educating the nation's life, demanding the implementation and development of education that can guarantee the development and life of the Indonesian nation. In learning Pancasila and Citizenship Education, there are two things that need the attention of teachers, namely equipping children with morals through the values contained in the five foundations of the state, namely
Pancasila and equipping students with material related to school academics.

The low student learning outcomes are influenced by several factors. Internal factors are students, while external factors are the learning environment, teachers, facilities, and infrastructure at school. The skills of teachers in using appropriate learning models are one of the external factors that can affect student learning outcomes. In this case, the teacher’s role is very important in the teaching and learning process. In the management of learning, the teacher must create a pleasant learning environment for students, so that in the learning process students do not feel forced, let alone pressured. One of the teacher's duties can be interpreted as an activity aimed at teaching students, where students actively participate in the learning process and motivate students.

B. RESEARCH METHODS

Location and Time of Research

This research was conducted in SDN 050601 Kuala district. The research was conducted in the odd semester of the 2020/2021 school year. This research was conducted in three meetings, which took place from January to February 2021. The timing of the research was adjusted to the academic calendar and schedule of Civics subjects at the school.

Population and Research Sample

The population is a large group that becomes the target of generalization or is broadened as all members of a clearly defined group of people, events, or objects. Therefore, the population in this study were all fourth-grade students of SD Negeri 050601 Kuala district as many as 54 students spread over 2 classes, namely IV-A and IV-B.
This research is an experimental study with a 2x2 factorial design. The dependent variable in this study is the learning outcomes of the fourth grade students of PPKn. The learning outcomes were obtained through the learning outcome test instrument which consisted of 25 multiple choice questions. Meanwhile, the independent variable in this study is the learning model which will be differentiated into the STAD cooperative learning model and the conventional learning model. The moderator variable in this study is student learning motivation which is divided into high learning motivation and low learning motivation. Student learning motivation can be identified through observation by observing student tendencies in socializing during learning. The research design can be seen in the following table:

Table 1. Research Design

<table>
<thead>
<tr>
<th>Motivation to learn (B)</th>
<th>Learning Model (A)</th>
<th>STAD model (A1)</th>
<th>Pemb Model. Conventional (A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (B1)</td>
<td>A1 B1</td>
<td>A2 B1</td>
<td></td>
</tr>
<tr>
<td>Low (B2)</td>
<td>A1 B2</td>
<td>A2 B2</td>
<td></td>
</tr>
</tbody>
</table>

Information:

- **A1 B1**: Student PPKn learning outcomes are taught using the STAD model and have high learning motivation
- **A1 B2**: Student PPKn learning outcomes are taught using the STAD model and have low learning motivation
- **A2 B1**: PPKn learning outcomes of students who are taught using conventional learning models and have high learning motivation
A2 B2 : PPKn learning outcomes of students who are taught using conventional learning models and have low learning motivation

Research procedure

The author in carrying out this research will take the following steps:

Chart 1. Research Procedures
C. RESULT AND DISCUSSION

1. Result

Description of the Pretest Data

The results of the student pretest were carried out in order to determine the average equivalence of students' abilities in the experimental and control classes. Pretest data were analyzed using descriptive statistics assisted by SPSS 20.0 for windows software. The calculation results are presented in table 2.

Table 2. Description of Pretest Results

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>30</td>
<td>6</td>
<td>17</td>
<td>11.20</td>
<td>3.123</td>
<td>9.752</td>
</tr>
<tr>
<td>Control</td>
<td>30</td>
<td>6</td>
<td>17</td>
<td>10.83</td>
<td>3.041</td>
<td>9.247</td>
</tr>
<tr>
<td>Valid N</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The difference in the results of the pretest students from the experimental class and the control class can also be seen by looking at the bar chart that has been provided below:

Figure 1. Pretest Mean and Standard Deviation Experiment and Control Class Students
Table 2 and Figure 1 show that the results of the pretest students for the two classes are relatively the same, namely the average score in the control class is 10.83 slightly lower than the experimental class which is 11.20. This shows that the results of the pretest students in the experimental class are not much different from those in the control class, so that each class may get different treatment. And furthermore, to strengthen the implementation of the two classes, different treatment may be given, it is necessary to test the normality and homogeneity of the data to see whether the data for the two classes are normally distributed and the data variance is homogeneous (same).

Postest Data Description

Postest data were analyzed using descriptive statistics assisted by SPSS 20.0 for windows software. The calculation results are presented in table 3.

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>30</td>
<td>11</td>
<td>42</td>
<td>27.67</td>
<td>8,672</td>
<td>75,195</td>
</tr>
<tr>
<td>Control</td>
<td>30</td>
<td>11</td>
<td>42</td>
<td>20.43</td>
<td>7,195</td>
<td>51,771</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The difference in student postest results from the experimental class and the control class can also be seen through the bar chart provided below:
After being given different treatments, the mean score of students' post-test results in the experimental class (27.67) was greater than that in the control class (20.43). Then if seen in Figure 4.3 shows that the posttest value of the experimental class and the posttest value of the high control class in the diagram is much different. Based on Table 4.4 and Figure 4.3, the posttest results obtained where students in the control class cannot solve the problem well than the experimental class, it can be concluded that the experimental class and the control class have relatively different values, but to test the hypothesis it is carried out. The statistical prerequisite tests that must be fulfilled are the normality test and the homogeneity test.
2. Discussion

Student PPKn Learning Outcomes

Based on the research results, it was found that the average learning outcomes of students who were taught using conventional models were 62.50, while those taught with the Cooperative Type STAD model were 76.04. The results showed that the learning outcomes of students who were taught with the Cooperative Type STAD model were higher than the conventional models. The results of t-test calculations on learning outcomes are obtained tcount score (= 68,500) is greater than ttable value (= 4.03) and tcount is positive so that H0 is rejected. Based on this, it can be concluded that hPPKn learning outcomes of students taught using the Cooperative Type STAD model are higher than students taught using conventional learning models.

In this study, there are two learning models being compared, namely conventional learning models and Cooperative Type STAD. Based on the above characteristics, it is in accordance with the results of the study that the STAD Type Cooperative learning model is considered to have a better effect than conventional learning models. The learning process will run well and creatively if the teacher provides the opportunity for students to find a rule (including concepts, theories, definitions and so on) through examples that illustrate the rules that are the source. If students learn only with Vygotsky's opinion about the social environment without rules or examples that must be used as a source, such as in Bruner's opinion, students will learn anything without him understanding the material being studied and its objectives.
D. CUNCLUSION

The learning motivation of students who are taught using the STAD cooperative learning model is higher than students who are taught using the conventional learning model. The learning outcomes of students who are taught using the cooperative model type STAD are higher than students who are taught using conventional learning models.

Bibliography

Suharsono. 2015. Pengaruh Model Pembelajaran Kooperatif Jigsaw dan STAD (Student Team Achievement Division) terhadap Prestasi

